Abstract

A logistic regression with random effects model is commonly applied to analyze clustered binary data, and every cluster is assumed to have a different proportion of success. However, it could be of interest to obtain the proportion of success over clusters (i.e. the marginal proportion of success). Furthermore, the degree of correlation among data of the same cluster (intraclass correlation) is also a relevant concept to assess, but when using logistic regression with random effects it is not possible to get an analytical expression of the estimators for marginal proportion and intraclass correlation. In our paper, we assess and compare approaches using different kinds of approximations: based on the logistic-normal mixed effects model (LN), linear mixed model (LMM), and generalized estimating equations (GEE). The comparisons are completed by using two real data examples and a simulation study. The results show the performance of the approaches strongly depends on the magnitude of the marginal proportion, the intraclass correlation, and the sample size. In general, the reliability of the approaches get worsen with low marginal proportion and large intraclass correlation. LMM and GEE approaches arises as reliable approaches when the sample size is large.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.