Abstract
The Colombian Pacific Coast is renowned for its exceptional biodiversity and hosts vital mangrove ecosystems that benefit local communities and contribute to climate change mitigation. Therefore, estimating mangrove aboveground biomass (AGB) in this region is crucial for planning and managing these coastal forest covers, ensuring the long-term sustainability of the essential environmental services provided by the Colombian Pacific Coast (CPC). This study employed a spatial estimation approach to assess mangrove AGB, evaluating various parametric and non-parametric models using a multisensor combination and machine learning on the Google Earth Engine (GEE) platform within the CPC. Synthetic aperture radar (SAR) satellite imagery (ALOS-2/PALSAR-2, SRTM, NASADEM, and ALOSDSM) and optical data (Landsat 8) were utilized to quantify mangrove AGB in 2022 across the four departments of the CPC. The Random Forest model exhibited superior predictive performance compared to the other models evaluated, achieving values of R2 = 0.783, RMSE = 38.239 [Mg/ha], MAE = 27.409 [Mg/ha], and BIAS = 0.164. Our findings reveal that the mangrove AGB map for the CPC exhibits a mean ± standard deviation of 181.236 ± 28.939 [Mg/ha] across eight classes, ranging from 88.622 [Mg/ha] to 378.21 [Mg/ha]. This research provides valuable information to inform and strengthen various management strategies and decision-making processes for the mangrove forests of the CPC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.