Abstract
Estimating lower extremity joint angle during gait is essential for biomechanical analysis and clinical purposes. Traditionally infrared light-based motion capture systems are used to get the joint angle information. However, such an approach is restricted to the lab environment, limiting the applicability of the method in daily living. Inertial Measurement Units (IMU) sensors can solve this limitation but are needed in each body segment, causing discomfort and impracticality in everyday living. As a result, it is desirable to build a system that can measure joint angles in daily living while ensuring user comfort. For this reason, this paper uses deep learning to estimate joint angle during gait using only two IMU sensors mounted on participants' shoes under four different walking conditions, i.e., treadmill, overground, stair, and slope. Specifically, we leverage Gated Recurrent Unit (GRU), 1D, and 2D convolutional layers to create sub-networks and take their average to get a final model in an end-to-end manner. Extensive evaluations are done on the proposed method, which outperforms the baseline and improves the Root Mean Square Error (RMSE) of joint angle prediction by up to 32.96%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.