Abstract
Urban heat island (UHI) effect tends to harm health, increase anthropogenic energy consumption, and water consumption. Some policies targeting UHI mitigation have been implemented for a few years and thus needs to be evaluated for changes or modifications in the future. A low-cost approach to rapidly monitoring UHI intensity variations can assist in evaluating policy implementations. In this study, we proposed a new approach to local-scale UHI intensity estimates by using nighttime light satellite imageries. We explored to what extent UHI intensity could be estimated according to nighttime light intensity at two local scales. We attempted to estimate district-level and neighbourhood-level UHI intensity across London and Paris. As the geography level rises from district to neighbourhood, the capacity of the models explaining the variations of the UHI intensity decreases. Although the possible presence of residual spatial autocorrelation in the conventional regression models applied to geospatial data, most of the studies are likely to neglect this issue when fitting data to models. To remove negative effects of the residual spatial autocorrelation, this study used spatial regression models instead of non-spatial regression models (e.g., OLS models) to estimate UHI intensity. As a result, district-level UHI intensity was successfully estimated according to nighttime light intensity (approximately R2 = 0.7, MAE =1.16 °C, and RMSE =1.74 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.