Abstract

Many high-dimensional data sets of practical interest exhibit a varying complexity in different parts of the data space. This is the case, for example, of databases of images containing many samples of a few textures of different complexity. Such phenomena can he modeled by assuming that the data lies on a collection of manifolds with different intrinsic dimensionalities. In this extended abstract, we introduce a method to estimate the local dimensionality associated with each point in a data set, without any prior information about the manifolds, their quantity and their sampling distributions. The proposed method uses a global dimensionality estimator based on k-nearest neighbor (k-NN) graphs, together with an algorithm for computing neighborhoods in the data with similar topological properties

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.