Abstract

A semiempirical approach to estimate liquefaction-induced lateral displacements using standard penetration test (SPT) or cone penetration test (CPT) data is presented. The approach combines available SPT- and CPT-based methods to evaluate liquefaction potential with laboratory test results for clean sands to estimate the potential maximum cyclic shear strains for saturated sandy soils under seismic loading. A lateral displacement index is then introduced, which is obtained by integrating the maximum cyclic shear strains with depth. Empirical correlations from case history data are proposed between actual lateral displacement, the lateral displacement index, and geometric parameters characterizing ground geometry for gently sloping ground without a free face, level ground with a free face, and gently sloping ground with a free face. The proposed approach can be applied to obtain preliminary estimates of the magnitude of lateral displacements associated with a liquefaction-induced lateral spread.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.