Abstract
ABSTRACT Linear Mixed Effects (LME) models are powerful statistical tools that have been employed in many different real-world applications such as retail data analytics, marketing measurement, and medical research. Statistical inference is often conducted via maximum likelihood estimation with Normality assumptions on the random effects. Nevertheless, for many applications in the retail industry, it is often necessary to consider non-Normal distributions on the random effects when considering the unknown parameters' business interpretations. Motivated by this need, a linear mixed effects model with possibly non-Normal distribution is studied in this research. We propose a general estimating framework based on a saddlepoint approximation (SA) of the probability density function of the dependent variable, which leads to constrained nonlinear optimization problems. The classical LME model with Normality assumption can then be viewed as a special case under the proposed general SA framework. Compared with the existing approach, the proposed method enhances the real-world interpretability of the estimates with satisfactory model fits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.