Abstract
Numerical nonlinear algebra is applied to maximum likelihood estimation for Gaussian models defined by linear constraints on the covariance matrix. We examine the generic case as well as special models (e.g. Toeplitz, sparse, trees) that are of interest in statistics. We study the maximum likelihood degree and its dual analogue, and we introduce a new software package LinearCovarianceModels.jl for solving the score equations. All local maxima can thus be computed reliably. In addition we identify several scenarios for which the estimator is a rational function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.