Abstract

The present paper is concerned with the use of the elastoplastic theory of critical distances (TCD) to perform the fatigue assessment of notched components subjected to in-service variable amplitude (VA) fatigue loading. The elastoplastic TCD takes as its starting point the assumption that the detrimental effect of stress/strain concentrators of any kind can efficiently be taken into account by directly postprocessing the entire elastoplastic stress/strain field in the vicinity of the notch apex. Thanks to its specific features, the TCD can be formalized in different ways by simply changing size and geometrical features of the domain used to calculate the required effective stress. The so-called point method (PM) is the simplest form in which this theory can be applied. This formalization of the TCD postulates that the elastoplastic stress/strain state to be used to estimate fatigue damage has to be determined at a given distance from the tip of the notch being assessed. According to the TCD's philosophy, such a distance is treated as a fatigue property. Therefore, given the material, this critical length does not change as either the features of the assessed stress/strain concentrator or the profile of the investigated loading path vary. In the present study, the above design strategy is attempted to be used to estimate lifetime of notched component subjected to VA loading, the required critical distance being determined under constant amplitude (CA) loading. The accuracy and reliability of the devised approach were checked by using a number of experimental results generated by testing, under both concave upward and concave downward spectra, notched samples containing geometrical features having a different sharpness. Such a validation exercise allowed us to prove that the elastoplastic TCD, used in the form of the PM, is highly accurate in estimating fatigue damage also in notched components subjected to in-service VA loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call