Abstract

With the rapid development of unmanned aerial vehicle (UAV) and sensor technology, UAVs that can simultaneously carry different sensors have been increasingly used to monitor nitrogen status in crops due to their flexibility and adaptability. This study aimed to explore how to use the image information combined from two different sensors mounted on an UAV to evaluate leaf nitrogen content (LNC) in corn. Field experiments with corn were conducted using different nitrogen rates and cultivars at the National Precision Agriculture Research and Demonstration Base in China in 2017. Digital RGB and multispectral images were obtained synchronously by UAV in the V12, R1, and R3 growth stages of corn, respectively. A novel family of modified vegetation indices, named coverage adjusted spectral indices (CASIs (CASI =VI/1+FVcover, where VI denotes the reference vegetation index and FVcover refers to the fraction of vegetation coverage), has been introduced to estimate LNC in corn. Thereby, typical VIs were extracted from multispectral images, which have the advantage of relatively higher spectral resolution, and FVcover was calculated by RGB images that feature higher spatial resolution. Then, the PLS (partial least squares) method was employed to investigate the relationships between LNC and the optimal set of CASIs or VIs selected by the RFA (random frog algorithm) in different corn growth stages. The analysis results indicated that whether removing soil noise or not, CASIs guaranteed a better estimation of LNC than VIs for all of the three growth stages of corn, and the usage of CASIs in the R1 stage yielded the best R2 value of 0.59, with a RMSE (root mean square error) of 22.02% and NRMSE (normalized root mean square error) of 8.37%. It was concluded that CASIs, based on the fusion of information acquired synchronously from both lower resolution multispectral and higher resolution RGB images, have a good potential for crop nitrogen monitoring by UAV. Furthermore, they could also serve as a useful way for assessing other physical and chemical parameters in further applications for crops.

Highlights

  • This study focuses on the potential applications of both UAV multi-sensor images and the modified vegetation index, coverage adjustment spectral index (CASI), for leaf nitrogen content (LNC) assessment

  • The colors of digital RGB images from the UAV were converted into hue, saturation, and value by hue saturation value (HSV), and threshold segmentation was used to differentiate between vegetation and soil in the images

  • This study explored how to use digital RGB and multispectral images from two sensors mounted simultaneously on a low-altitude UAV to assess nitrogen status in three growth stages of corn

Read more

Summary

Introduction

Nitrogen is a critical nutrient element for crop growth. The proper application of nitrogen fertilizer has a significant influence on final crop yield and quality. Leaf nitrogen in crop canopies is an important indicator that characterizes the nitrogen nutrition status in crops. Accurate and dynamic estimation of crop leaf nitrogen is of significance for rationally managing nitrogen fertilization [1,2]

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.