Abstract
Leaf mass per area (LMA) is an important leaf trait but challenging to be accurately estimated. This article proposes a simple leaf radiative transfer model called ISPECT. It explains the difference in optical properties observed on the adaxial (upper) and abaxial (lower) sides of leaves, i.e., their dorsiventrality, with a limited number of structural parameters. The performance of ISPECT in estimating LMA is compared to that of five other leaf radiative transfer models (FASPECT, DLM, PROSPECT-D, PROSPECT-5B, and Leaf-SIP). We tested six experimental datasets with 962 leaf samples and two spectral ranges: the solar domain (0.4–2.5 µm) and the shortwave infrared (1.7–2.4 µm). Results show that PROSPECT-D and PROSPECT-5B accurately estimate LMA using the shortwave infrared spectra, while ISPECT and FASPECT perform well in both spectral ranges. Further analysis demonstrates that leaf dorsiventrality is likely to be an influential factor for LMA estimation: thus ISPECT can accurately estimate LMA in the solar and shortwave infrared domains, with NRMSE of 26.0% and 28.8%, respectively. This motivates further studies on LMA mapping from spaceborne imaging spectrometers (e.g., PRISMA, GaoFen-5, EnMAP) by coupling ISPECT with canopy radiative transfer models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.