Abstract

ABSTRACT Accurate estimation of crop parameters, such as Leaf Area Index (LAI) and biomass over large areas using remote sensing techniques, is crucial for monitoring crop growth and yield prediction. In this study, a Gaussian Process Regression (GPR) method was developed to estimate LAI and biomass values of sugarcane during growth season using optical and synthetic-Aperture Radar (SAR) data fusion. Predicting LAI on an independent test data set using the GPR and the combined optical and SAR indices provided better prediction accuracies of LAI; with the GPR based on radial basis function (Root Mean Square Error [RMSE] = 0.34, Mean Absolute Error [MAE] = 0.28 and Mean Absolute Percentage Error [MAPE] = 10.5%) and polynomial function (RMSE = 0.42, MAE = 0.31 and MAPE = 12.58%), respectively. The test results of sugarcane biomass also showed that the GPR (poly) produced the highest statistical results (RMSE = 2.45 kg/m2, MAE = 1.72 kg/m2, MAPE = 8.1%) using the combined indices. The results suggest that the crop biophysical retrieval based on optical and SAR data fusion and GPR proposed in this study could improve LAI and biomass estimation that could help for effective crop growth monitoring and mapping applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call