Abstract

The interface between nano-scale films is of relevance in many critical applications. Specifically, recent technological advances in semiconductor industry that utilize Silicon-on-Insulator (SOI) devices have given urgency to understanding thermal transport across Si-SiO2 interface. Estimates of interfacial (Kapitza) resistance to thermal transport across Si-SiO2 films do not appear to exist at the present time. In this paper, we develop and carryout reverse non-equilibrium molecular dynamics (NEMD) simulations by imposing known heat flux to determine the Kapitza resistance between Si-SiO2 thin films. For the Si-SiO2 interface, the average Kapitza resistance for a ~8 Aring thick oxide layer system was 0.503 times 10-9 m K/W and for a ~11.5 Aring thick oxide layer system was 0.518 times 10-9 m K/W. These values were of the same order of magnitude as the Kapitza resistance values determined from the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM) for the Si-SiO2 interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.