Abstract
Previously, we investigated the prediction of total effort and errors for embedded software development projects using an artificial neural network (ANN). In addition, we proposed a method for reducing this margin of error. However, methods using ANNs have reached their improvement limits, since an appropriate value is estimated using what is known as point estimation in statistics. In this paper, we propose a method for predicting the number of errors for embedded software development projects using interval estimation provided by a support vector machine (SVM) and ANN. In our evaluation experiment, we compared the accuracy of the SVM model with that of the ANN model using 10-fold cross-validation. Results of Welch's t-test show that the SVM model is more accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.