Abstract
Information theory is an outstanding framework for measuring uncertainty, dependence, and relevance in data and systems. It has several desirable properties for real-world applications: naturally deals with multivariate data, can handle heterogeneous data, and the measures can be interpreted. However, it has not been adopted by a wider audience because obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality. We propose an indirect way of estimating information based on a multivariate iterative Gaussianization transform. The proposed method has a multivariate-to-univariate property: it reduces the challenging estimation of multivariate measures to a composition of marginal operations applied in each iteration of the Gaussianization. Therefore, the convergence of the resulting estimates depends on the convergence of well-understood univariate entropy estimates, and the global error linearly depends on the number of times the marginal estimator is invoked. We introduce Gaussianization-based estimates for Total Correlation, Entropy, Mutual Information, and Kullback-Leibler Divergence. Results on artificial data show that our approach is superior to previous estimators, particularly in high-dimensional scenarios. We also illustrate the method's performance in different fields to obtain interesting insights. We make the tools and datasets publicly available to provide a test bed for analyzing future methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.