Abstract

It is common to fit generalized linear models with binomial and Poisson responses, where the data show a variability that is greater than the theoretical variability assumed by the model. This phenomenon, known as overdispersion, may spoil inferences about the model by considering significant parameters associated with variables that have no significant effect on the dependent variable. This paper explains some methods to detect overdispersion and presents and evaluates three well-known methodologies that have shown their usefulness in correcting this problem, using random mean models, quasi-likelihood methods and a double exponential family. In addition, it proposes some new Bayesian model extensions that have proved their usefulness in correcting the overdispersion problem. Finally, using the information provided by the National Demographic and Health Survey 2005, the departmental factors that have an influence on the mortality of children under 5 years and female postnatal period screening are determined. Based on the results, extensions that generalize some of the aforementioned models are also proposed, and their use is motivated by the data set under study. The results conclude that the proposed overdispersion models provide a better statistical fit of the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.