Abstract

With the advancement in drug development, multiple treatments are available for a single disease. Patients can often benefit from taking multiple treatments simultaneously. For example, patients in Clinical Practice Research Datalink with chronic diseases such as type 2 diabetes can receive multiple treatments simultaneously. Therefore, it is important to estimate what combination therapy from which patients can benefit the most. However, to recommend the best treatment combination is not a single label but a multilabel classification problem. In this paper, we propose a novel outcome weighted deep learning algorithm to estimate individualized optimal combination therapy. The Fisher consistency of the proposed loss function under certain conditions is also provided. In addition, we extend our method to a family of loss functions, which allows adaptive changes based on treatment interactions. We demonstrate the performance of our methods through simulations and real data analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.