Abstract

Capturing variability within flow is an important task for traffic flow models. The linearity of the congested part of the fundamental diagram induces a linear speed-spacing relationship at an individual level, characterized by two parameters. This study assumes that most intervehicle variability can be accounted for by estimating these two parameters for each vehicle. Two methods are presented to quantify individual linear speed-spacing relationships. The first method is based on data: it estimates the speed-spacing relationship by fitting the experimental speed-spacing scatter plot with a straight line. The second method is based on simulation: it computes the optimum parameters so that the simulated trajectories obtained by Newell's car-following algorithm reproduce as closely as possible the experimental vehicle's trajectories. Both proposed methods are implemented on the Next Generation Simulation trajectory data set recorded on I-80. The individual parameters for the speed-spacing relationship are quantified, and their distributions are specified. The need to distinguish driver behavior on a lane-by-lane basis is discussed. The results tend to prove that taking into account individual variability between drivers can improve the accuracy of simulated trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.