Abstract
The studies of impervious surfaces are important because they are related to many environmental problems, such as water quality, stream health, and the urban heat island effect. Previous studies have discussed that the self-organizing map (SOM) can provide a promising alternative to the multi-layer perceptron (MLP) neural networks for image classification at both per-pixel and sub-pixel level. However, the performances of SOM and MLP have not been compared in the estimation and mapping of urban impervious surfaces. In mid-latitude areas, plant phenology has a significant influence on remote sensing of the environment. When the neural networks approaches are applied, how satellite images acquired in different seasons impact impervious surface estimation of various urban surfaces (such as commercial, residential, and suburban/rural areas) remains to be answered. In this paper, an SOM and an MLP neural network were applied to three ASTER images acquired on April 5, 2004, June 16, 2001, and October 3, 2000, respectively, which covered Marion County, Indiana, United States. Six impervious surface maps were yielded, and an accuracy assessment was performed. The root mean square error (RMSE), the mean average error (MAE), and the coefficient of determination ( R 2) were calculated to indicate the accuracy of impervious surface maps. The results indicated that the SOM can generate a slightly better estimation of impervious surfaces than the MLP. Moreover, the results from three test areas showed that, in the residential areas, more accurate results were yielded by the SOM, which indicates that the SOM was more effective in coping with the mixed pixels than the MLP, because the residential area prevailed with mixed pixels. Results obtained from the commercial area possessed very high RMSE values due to the prevalence of shade, which indicates that both algorithms cannot handle the shade problem well. The lowest RMSE value was obtained from the rural area due to containing of less mixed pixels and shade. This research supports previous observations that the SOM can provide a promising alternative to the MLP neural network. This study also found that the impact of different map sizes on the impervious surface estimation is significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.