Abstract

We address the problem of recovering 3D human pose from single 2D images, in which the pose estimation problem is formulated as a direct nonlinear regression from image observation to 3D joint positions. One key issue that has not been addressed in the literature is how to estimate 3D pose when humans in the scenes are partially or heavily occluded. When occlusions occur, features extracted from image observations (e.g., silhouettes-based shape features, histogram of oriented gradient, etc.) are seriously corrupted, and consequently the regressor (trained on un-occluded images) is unable to estimate pose states correctly. In this paper, we present a method that is capable of handling occlusions using sparse signal representations, in which each test sample is represented as a compact linear combination of training samples. The sparsest solution can then be efficiently obtained by solving a convex optimization problem with certain norms (such as l 1-norm). The corrupted test image can be recovered with a sparse linear combination of un-occluded training images which can then be used for estimating human pose correctly (as if no occlusions exist). We also show that the proposed approach implicitly performs relevant feature selection with un-occluded test images. Experimental results on synthetic and real data sets bear out our theory that with sparse representation 3D human pose can be robustly estimated when humans are partially or heavily occluded in the scenes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.