Abstract
Surface solar irradiance (SSI) is a crucial component in climatological and agricultural applications. Because the use of renewable energy is crucial, the importance of SSI has increased. In situ measurements are often used to investigate SSI; however, their availability is limited in spatial coverage. To precisely estimate the distribution of SSI with fine spatiotemporal resolutions, we used the GEOstationary Korea Multi-Purpose SATellite 2A (GEO-KOMPSAT 2A, GK2A) equipped with the Advanced Meteorological Imager (AMI). To obtain an optimal model for estimating hourly SSI around Korea using GK2A/AMI, the convolutional neural network (CNN) model as a machine learning (ML) technique was applied. Through statistical verification, CNN showed a high accuracy, with a root mean square error (RMSE) of 0.180 MJ m−2, a bias of −0.007 MJ m−2, and a Pearson’s R of 0.982. The SSI obtained through a ML approach showed an accuracy higher than the GK2A/AMI operational SSI product. The CNN SSI was evaluated by comparing it with the in situ SSI from the Ieodo Ocean Research Station and from flux towers over land; these in situ SSI values were not used for training the model. We investigated the error characteristics of the CNN SSI regarding environmental conditions including local time, solar zenith angle, in situ visibility, and in situ cloud amount. Furthermore, monthly and annual mean daily SSI were calculated for the period from 1 January 2020 to 31 January 2022, and regional characteristics of SSI around Korea were analyzed. This study addressed the availability of satellite-derived SSI to resolve the limitations of in situ measurements. This could play a principal role in climatological and renewable energy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.