Abstract

Assessing short-term exposure to PM2.5 requires the concentration distribution at a high spatiotemporal resolution. Abundant researches have derived the daily predictions of fine particles, but estimating hourly PM2.5 is still a challenge restrained by the input data. The recent aerosol optical depth (AOD) product from Himawari-8 provides hourly satellite observations informative to modelling. In this study, we developed separate random forest models with and without AOD and combined the estimates to obtain a full-coverage hourly PM2.5 distribution. 10-fold cross validation R2 ranged from 0.92 to 0.95 and root mean square errors from 14.1 to 16.9 μg/m3, indicating the good model performance. Spatial convolutional layers of PM2.5 measurements and temporal accumulation effects of meteorological features were added into the model. They turned out to be of the most important predictors and improved the performance significantly. Finally, we mapped hourly PM2.5 at a 1-km resolution in Beijing during a pollution episode in 2019 and studied the pollution pattern. The study proposed a method to obtain 24-h full-coverage hourly PM2.5 estimates which are useful for acute exposure assessment in epidemiological researches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.