Abstract

We consider the problem of obtaining unbiased estimates of group properties in social networks when using a classifier for node labels. Inference for this problem is complicated by two factors: the network is not known and must be crawled, and even high-performance classifiers provide biased estimates of group proportions. We propose and evaluate AdjustedWalk for addressing this problem. This is a three step procedure which entails: (1) walking the graph starting from an arbitrary node; (2) learning a classifier on the nodes in the walk; and (3) applying a post-hoc adjustment to classification labels. The walk step provides the information necessary to make inferences over the nodes and edges, while the adjustment step corrects for classifier bias in estimating group proportions. This process provides de-biased estimates at the cost of additional variance. We evaluate AdjustedWalk on four tasks: the proportion of nodes belonging to a minority group, the proportion of the minority group among high degree nodes, the proportion of within-group edges, and Coleman’s homophily index. Simulated and empirical graphs show that this procedure performs well compared to optimal baselines in a variety of circumstances, while indicating that variance increases can be large for low-recall classifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.