Abstract

In the current research, the ground-penetrating radar (GPR) method has been employed to identify physical and geometrical parameters of buried cylindrical structures using the pattern recognition approach. To achieve this goal, the well-established mathematical relationships between geometrical parameters of cylindrical target (radius, burial depth, and horizontal location) and the associated GPR hyperbolic response characteristics are employed using the template matching method. In order to validate the applicability of the template matching method in providing estimates of such parameters, the method is first examined on GPR responses of synthetic models with known geometrical parameters followed by applying on real data using two different similarity criteria including 2-D spatial convolution and normalized cross correlation in the wave number domain. In the first step, the GPR responses of 71 synthetic models encompassing one, two, and three horizontal cylinders were produced using the improved 2-D finite difference in frequency domain. Then, appropriate preprocessing sequences to reduce random noise caused by forward modeling were applied on synthetic data. The proposed algorithm applied on several synthetic model responses could estimate the known geometrical parameters of the buried cylinders with acceptable accuracy (maximum error of 15%). The template matching algorithm was also used to extract geometrical parameters of water and wastewater pipes buried in Imam Hossein Square, Isfahan city, as real GPR data. Depending on environmental conditions and subsurface host formation, the real GPR data normally contain a variety of noises; therefore, a series of appropriate objective preprocessing and processing stages were designed in order to apply on real GPR images before deploying template matching algorithm. The applicability of the template matching algorithm on real data and validity of the estimated parameters were proved based on assessing the accuracy of the estimated geometrical parameters of respective pipes through GPR response versus the measured parameters. The proposed algorithm was designed in such a way that all steps of estimating geometrical parameters of buried cylindrical targets are automatically carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call