Abstract
BackgroundThe effects of fine particulate matter (PM2.5) on acute myocardial infarction (AMI) have been widely recognized. However, no studies have comprehensively evaluated future PM2.5-attributed AMI burdens under different climate mitigation and population change scenarios. We aimed to quantify the PM2.5-AMI association and estimate the future change in PM2.5-attributed AMI incident cases under six integrated scenarios in 2030 and 2060 in Shandong Province, China. MethodsDaily AMI incident cases and air pollutant data were collected from 136 districts/counties in Shandong Province from 2017 − 2019. A two-stage analysis with a distributed lag nonlinear model was conducted to quantify the baseline PM2.5-AMI association. The future change in PM2.5-attributed AMI incident cases was estimated by combining the fitted PM2.5-AMI association with the projected daily PM2.5 concentrations under six integrated scenarios. We further analyzed the factors driving changes in PM2.5-related AMI incidence using a decomposition method. ResultsEach 10 μg/m3 increase in PM2.5 exposure at lag05 was related to an excess risk of 1.3 % (95 % confidence intervals: 0.9 %, 1.7 %) for AMI incidence from 2017 − 2019 in Shandong Province. The estimated total PM2.5-attributed AMI incident cases would increase by 10.9−125.9 % and 6.4–244.6 % under Scenarios 1 − 3 in 2030 and 2060, whereas they would decrease by 0.9–5.2 % and 33.0–46.2 % under Scenarios 5 – 6 in 2030 and 2060, respectively. Furthermore, the percentage increases in PM2.5-attributed female cases (2030: −0.3 % to 135.1 %; 2060: −33.2 % to 321.5 %) and aging cases (2030: 15.2–171.8 %; 2060: −21.5 % to 394.2 %) would wholly exceed those in male cases (2030: −1.8 % to 133.2 %; 2060: −41.1 % to 264.3 %) and non-aging cases (2030: −41.0 % to 45.7 %; 2060: −89.5 % to −17.0 %) under six scenarios in 2030 and 2060. Population aging is the main driver of increased PM2.5-related AMI incidence under Scenarios 1 − 3 in 2030 and 2060, while improved air quality can offset these negative effects of population aging under the implementation of the carbon neutrality and 1.5 °C targets. ConclusionThe combination of ambitious climate policies (i.e., 1.5 °C warming limits and carbon neutrality targets) with stringent clean air policies is necessary to reduce the health impacts of air pollution in Shandong Province, China, regardless of population aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.