Abstract
This paper discusses the problem of estimation for two classes of nonlinear models, namely random coefficient autoregressive (RCA) and autoregressive conditional heteroskedasticity (ARCH) models. For the RCA model, first assuming that the nuisance parameters are known we construct an estimator for parameters of interest based on Godambe's asymptotically optimal estimating function. Then, using the conditional least squares (CLS) estimator given by Tjostheim (1986, Stochastic Process. Appl., 21, 251–273) and classical moment estimators for the nuisance parameters, we propose an estimated version of this estimator. These results are extended to the case of vector parameter. Next, we turn to discuss the problem of estimating the ARCH model with unknown parameter vector. We construct an estimator for parameters of interest based on Godambe's optimal estimator allowing that a part of the estimator depends on unknown parameters. Then, substituting the CLS estimators for the unknown parameters, the estimated version is proposed. Comparisons between the CLS and estimated optimal estimator of the RCA model and between the CLS and estimated version of the ARCH model are given via simulation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.