Abstract
Fine particulate matter (PM2.5) has attracted extensive attention due to its harmful effects on humans and the environment. The sparse ground-based air monitoring stations limit their application for scientific research, while aerosol optical depth (AOD) by remote sensing satellite technology retrieval can reflect air quality on a large scale and thus compensate for the shortcomings of ground-based measurements. In this study, the elaborate vertical-humidity method was used to estimate PM2.5 with the spatial resolution 1 km and the temporal resolution 1 hour. For vertical correction, the scale height of aerosols (Ha) was introduced based on the relationship between the visibility data and extinction coefficient of meteorological observations to correct the AOD of the Advance Himawari Imager (AHI) onboard the Himawari-8 satellite. The hygroscopic growth factor (f(RH)) was fitted site-by-site and month by month (1–12 months). Meanwhile, the spatial distribution of the fitted coefficients can be obtained by interpolation assuming that the aerosol properties vary smoothly on a regional scale. The inverse distance weighted (IDW) method was performed to construct the hygroscopic correction factor grid for humidity correction so as to estimate the PM2.5 concentrations in Sichuan and Chongqing from 09:00 to 16:00 in 2017–2018. The results indicate that the correlation between “dry” extinction coefficient and PM2.5 is slightly improved compared to the correlation between AOD and PM2.5, with r coefficient values increasing from 0.12–0.45 to 0.32–0.69. The r of hour-by-hour verification is between 0.69 and 0.85, and the accuracy of the afternoon is higher than that of the morning. Due to the missing rate of AOD in the southwest is very high, this study utilized inverse variance weighting (IVW) gap-filling method combine satellite estimation PM2.5 and the nested air-quality prediction modeling system (NAQPMS) simulation data to obtain the full-coverage hourly PM2.5 concentration and analyze a pollution process in the fall and winter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.