Abstract
The integration of agricultural robots in precision farming plays a pivotal role in tackling the pressing demands of minimizing energy usage, enhancing productivity, and maximizing crop yield to meet the needs of an expanding global population and depleting non-renewable resources. Evaluating the energy expenditure is vital when assessing agricultural machinery systems. Through the reduction of fuel consumption, operational costs can be curtailed while simultaneously minimizing the overall environmental footprint left by these machines. Accurately calculating fuel usage empowers farmers to make well-informed decisions about their farming operations, resulting in more sustainable and productive methods. In this study, the ASABE model was applied to predict the fuel consumption of the studied robot. Results show that the ASABE model can predict the fuel consumption of the robot with an average error equal to 27.5%. Moreover, different machine-learning techniques were applied to develop an effective and novel model for estimating the fuel consumption of an agricultural robot. The proposed GPR model (gaussian process regression) considers four operational features of the studied robot: total operational time, total traveled distance, automatic working distance, and automatic turning distance. The GPR model with four features, considering hyperparameter optimization, showed the best performance (R-squared validation = 0.93, R-squared test = 1.00) among other models. Furthermore, three different ML methods (gradient boosting, random forest, and XGBoost) were considered in this study and compared with the developed GPR model. The results show that the GPR model outperformed the mentioned models. Moreover, the one-way ANOVA test results revealed that the predicted values from the GPR model and observation do not have significantly different means. The results of the sensitivity analysis show that the traveled distance and the total time have a significant correlation with the fuel consumption of the studied robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.