Abstract

The feasibility of locating fracture zones and estimating their crack parameters was examined using an areal well shoot method centered on Utah State Geothermal Well 9-1, Beaver County, Utah. High-resolution travel time measurements were made between a borehole sensor and an array of shot stations distributed radially and azimuthally about the well. Directional velocity behavior in the vicinity of the well was investigated by comparing velocity logs derived from the travel time data. Three fracture zones were identified form the velocity data, corroborating fracture indicators seen in other geophysical logs conducted in Well 9-1. Crack densities and average crack aspect ratios for these fracture zones were estimated using a self-consistent velocity theory (O'Connell and Budiansy 1974). Probable trends of these fracture zones were established from a combination of the data from the more distant shot stations and the results of a gravity survey. The results of this study indicate that the areal well shoot is a potentially powerful tool for the reconnaisance of fracture-controlled fluid and gas reservoirs. Improvements in methodology and hardware could transform it into an operationally viable survey method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call