Abstract
A new individual tree-based algorithm for determining forest biomass using small footprint LiDAR data was developed and tested. This algorithm combines computer vision and optimization techniques to become the first training data-based algorithm specifically designed for processing forest LiDAR data. The computer vision portion of the algorithm uses generic properties of trees in small footprint LiDAR canopy height models (CHMs) to locate trees and find their crown boundaries and heights. The ways in which these generic properties are used for a specific scene and image type is dependent on 11 parameters, nine of which are set using training data and the Nelder–Mead simplex optimization procedure. Training data consist of small sections of the LiDAR data and corresponding ground data. After training, the biomass present in areas without ground measurements is determined by developing a regression equation between properties derived from the LiDAR data of the training stands and biomass, and then applying the equation to the new areas. A first test of this technique was performed using 25 plots (radius = 15 m) in a loblolly pine plantation in central Virginia, USA (37.42N, 78.68W) that was not intensively managed, together with corresponding data from a LiDAR canopy height model (resolution = 0.5 m). Results show correlations ( r) between actual and predicted aboveground biomass ranging between 0.59 and 0.82, and RMSEs between 13.6 and 140.4 t/ha depending on the selection of training and testing plots, and the minimum diameter at breast height (7 or 10 cm) of trees included in the biomass estimate. Correlations between LiDAR-derived plot density estimates were low (0.22 ≤ r ≤ 0.56) but generally significant (at a 95% confidence level in most cases, based on a one tailed test), suggesting that the program is able to properly identify trees. Based on the results it is concluded that the validation of the first training data-based algorithm for determining forest biomass using small footprint LiDAR data was a success, and future refinement and testing are merited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.