Abstract

1. Many studies investigating fitness correlates of dispersal in vertebrates report dispersers to have lower fitness than philopatric individuals. However, if dispersers are more likely to produce dispersing young or are more likely to disperse again in the next year(s) than philopatric individuals, there is a risk that fitness estimates based on local adult survival and local recruitment will be underestimated for dispersers. 2. We review the available empirical evidence on parent-offspring resemblance and individual lifelong consistency in dispersal behaviour, and relate these studies to recent studies of fitness correlates of dispersal in vertebrates. 3. Of the 12 studies testing directly for parent-offspring resemblance in dispersal propensity, five report a significant resemblance. The average effect size (r) of parent-offspring resemblance in dispersal was 0.15 [95% confidence interval (CI) = 0.07-0.22], with no difference between the sexes (average weighted effect size of 0.12 (0.08-0.16) and 0.16 (0.11-0.20) for females and males, respectively). Only three studies report data on within-individual consistency in dispersal propensity, of which two suggest dispersers to be more likely to disperse again. 4. To assess the magnitude of fitness underestimation expected for dispersing individuals depending on the heritability of dispersal distance and study area size, we used a simulation approach. Even when study area size is 10 times the mean dispersal distance, local recruitment per breeding event may be underestimated by 4-10%, generating a potential difference of 4-60% in average lifetime production of recruits between dispersing and philopatric individuals, with larger differences in long-lived species. 5. Estimates of both fitness correlates of dispersal and parent-offspring resemblance or within-individual consistency in dispersal behaviour have been reported for 11 species. Although some comparisons suggest genuine differences in fitness components between philopatric and dispersing individuals, others, based on adult and juvenile survival, are open to the alternative explanation of biased fitness estimates. 6. We list three potential ways of reducing the risk of making wrong inferences on biased fitness estimates due to such non-random dispersal behaviour between dispersing and philopatric individuals: (a) diagnosing effects of non-random dispersal, (b) reducing the effects of spatially limited study area and (c) performing controlled experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.