Abstract

The purpose of this work was to estimate scanner-independent CTDIvol -to-fetal-dose coefficients for tube current-modulated (TCM) and fixed tube current (FTC) computed tomography (CT) examinations of pregnant patients of various gestational ages undergoing abdominal/pelvic CT examinations. For 24 pregnant patients of gestational age from <5 to 36weeks who underwent clinically indicated CT examinations, voxelized models of maternal and fetal (or embryo) anatomy were created from abdominal/pelvic image data. Absolute fetal dose (Dfetus ) was estimated using Monte Carlo (MC) simulations of helical scans covering the abdomen and pelvis for TCM and FTC scans. Estimated TCM schemes were generated for each patient model using a validated method that accounts for patient attenuation and scanner output limits for one scanner model and were incorporated into MC simulations. FTC scans were also simulated for each patient model with multidetector row CT scanners from four manufacturers. Normalized fetal dose estimates, nDfetus , was obtained by dividing Dfetus from the MC simulations by CTDIvol . Patient size was described using water equivalent diameter (Dw ) measured at the three-dimensional geometric centroid of the fetus. Fetal depth (DEf ) was measured from the anterior skin surface to the anterior part of the fetus. nDfetus and Dw were correlated using an exponential model to develop equations for fetal dose conversion coefficients for TCM and FTC abdominal/pelvic CT examinations. Additionally, bivariate linear regression was performed to analyze the correlation of nDfetus with Dw and fetal depth (DEf ). For one scanner model, nDfetus from TCM was compared to FTC and the size-specific dose estimate (SSDE) conversion coefficients (f-factors) from American Association of Physicists in Medicine (AAPM) Report 204. nDfetus from FTC simulations was averaged across all scanners for each patient . was then compared with SSDE f-factors and correlated with Dw using an exponential model and with Dw and DEf using a bivariate linear model. For TCM, the coefficient of determination (R2 ) of nDfetus and Dw was observed to be 0.73 using an exponential model. Using the bivariate linear model with Dw and DEf , an R2 of 0.78 was observed. For the TCM technology modeled, TCM yielded nDfetus values that were on average 6% and 17% higher relative to FTC and SSDE f-factors, respectively. For FTC, the R2 of with respect to Dw was observed to be 0.64 using an exponential model. Using the bivariate linear model, an R2 of 0.75 was observed for with respect to Dw and DEf . A mean difference of 0.4% was observed between and SSDE f-factors. Good correlations were observed for nDfetus from TCM and FTC scans using either an exponential model with Dw or a bivariate linear model with both Dw and DEf . These results indicate that fetal dose from abdomen/pelvis CT examinations of pregnant patients of various gestational ages may be reasonably estimated with models that include (a) scanner-reported CTDIvol and (b) Dw as a patient size metric, in addition to (c) DEf if available. These results also suggest that SSDE f-factors may provide a reasonable (within ±25%) estimate of nDfetus for TCM and FTC abdomen/pelvis CT exams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.