Abstract
A change in δ13CH4 during mesophilic methanization of cellulosic waste (paper and cardboard) was described using a mathematical model based on stoichiometric chemical reactions, microbial dynamics and the equation for the 13C isotope accumulation in products including isotope fractionation. In this study, experimental data, previously obtained by Qu et al. (2009), was used to model metabolic pathways of cellulose transformation. A significant change in δ13CH4 occurred in time during cellulosic waste methanization which was in accordance with the model. It was explained by the change in input of acetoclastic and hydrogenotrophic methanogenesis as well as by fractionation of stable carbon isotopes 13C and 12C which was much higher for hydrogenotrophic methanogenesis when compared to acetoclastic methanogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.