Abstract

Mean residence time (MRT) in industrial flotation cells is one of the key parameters for kinetic modelling and identification of effective volumes. However, not all plants have access to robust tracer techniques to reliably measure this parameter with reasonable accuracy. For this reason, flotation practitioners estimate the mean residence time from the volumetric pulp flowrate and the effective cell volume. The latter requires assumptions on the air and froth volumes inside the machines, which has led to inaccuracies in MRT estimations. To overcome this challenge, the present communication correlated the measured (τm) and calculated MRTs from the rougher circuits of four copper flotation plants (twenty-eight surveys). The rougher stages of these plants consisted of forced-air mechanical cells of 100, 160 and 200 m3. The correlation between the measured and calculated MRTs showed that the following equation can be used as an approach to predict the MRT in industrial forced-air flotation cells: τm=αVf/Q, with α = 0.872 representing the relative effective volume (95 % confidence interval of 0.839–0.905), Vf the total cell volume, and Q the volumetric feed flowrate of pulp. This interval for the relative effective volume is proposed as a reference range to consolidate current assumptions for cell sizing, or to revisit these assumptions in case of significant deviations regarding the observed interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.