Abstract

Abstract A global ocean circulation model is formulated in terms of the “residual mean” and used to study eddy–mean flow interaction. Adjoint techniques are used to compute the three-dimensional eddy stress field that minimizes the departure of the coarse-resolution model from climatological observations of temperature. The resulting 3D maps of eddy stress and residual-mean circulation yield a wealth of information about the role of eddies in large-scale ocean circulation. In eddy-rich regions such as the Southern Ocean, the Kuroshio, and the Gulf Stream, eddy stresses have an amplitude comparable to the wind stress, of order 0.2 N m−2, and carry momentum from the surface down to the bottom, where they are balanced by mountain form drag. From the optimized eddy stress, 3D maps of horizontal eddy diffusivity κ are inferred. The diffusivities have a well-defined large-scale structure whose prominent features are 1) large values of κ (up to 4000 m2 s−1) in the western boundary currents and on the equatorial flank of the Antarctic Circumpolar Current and 2) a surface intensification of κ, suggestive of a dependence on the stratification N 2. It is shown that implementation of an eddy parameterization scheme in which the eddy diffusivity has an N 2 dependence significantly improves the climatology of the ocean model state relative to that obtained using a spatially uniform diffusivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.