Abstract

Estimating the physical parameters of articulated multibody systems (AMBSs) using an uncalibrated monocular camera poses significant challenges for vision-based robotics. Articulated multibody models, especially ones including dynamics, have shown good performance for pose tracking, but require good estimates of system parameters. In this paper, we first propose a technique for estimating parameters of a dynamically equivalent model (kinematic/geometric lengths as well as mass, inertia, damping coefficients) given only the underlying articulated model topology. The estimated dynamically equivalent model is then employed to help predict/filter/gap-fill the raw pose estimates, using an unscented Kalman filter. The framework is tested initially on videos of a relatively simple AMBS (double pendulum in a structured laboratory environment). The double pendulum not only served as a surrogate model for the human lower limb in flight phase, but also helped evaluate the role of model fidelity. The treatment is then extended to realize physically plausible pose-estimates of human lower-limb motions, in more-complex uncalibrated monocular videos (from the publicly available DARPA Mind's Eye Year 1 corpus). Beyond the immediate problem-at-hand, the presented work has applications in creation of low-order surrogate computational dynamics models for analysis, control, and tracking of many other articulated multibody robotic systems (e.g., manipulators, humanoids) using vision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.