Abstract

As a complex dynamic system, the brain exhibits spatially organized recurring patterns of activity over time. Coactivation patterns (CAPs), which analyzes data from each single frame, have been utilized to detect transient brain activity states recently. However, previous CAP analyses have been conducted at the group level, which might neglect meaningful individual differences. Here, we estimated individual CAP states at both subject- and scan-level based on a densely sampled dataset: Midnight Scan Club. We used differential identifiability, which measures the gap between intra- and inter-subject similarity, to evaluate individual differences. We found individual CAPs at the subject-level achieved the best fingerprinting ability by maintaining high intra-subject similarity and enlarging inter-subject differences, and brain regions of association networks mainly contributed to the identifiability. On the other hand, scan-level CAP states were unstable across scans for the same participant. Expectedly, we found subject-specific CAPs became more reliable and discriminative with more data (i.e., longer duration). As the acquisition time of each participant is limited in practice, our results recommend a data collection strategy that collects more scans with appropriate duration (e.g., 12 ~ 15min/scan) to obtain more reliable subject-specific CAPs, when total acquisition time is fixed (e.g., 150min). In summary, this work has constructed reliable subject-specific CAP states with meaningful individual differences, and recommended an appropriate data collection strategy, which can guide subsequent investigations into individualized brain dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.