Abstract

We use the available transport measurements in the literature to develop a dataset for the likely amount of disorder in semiconductor (InAs and InSb) materials which are used in fabricating the superconductor-semiconductor nanowire samples in the experimental search for Majorana zero modes. Using the estimated disorder in direct Majorana simulations, we conclude that the current level of disorder in semiconductor Majorana nanowires is at least an order of magnitude higher than that necessary for the emergence of topological Majorana zero modes. In agreement with existing results, we find that our estimated disorder leads to the occasional emergence of trivial zero modes, which can be post-selected and then further fine-tuned by varying system parameters (e.g., tunnel barrier), leading to trivial zero-bias conductance peaks in tunneling spectroscopy with $ \sim 2e^2/h $ magnitude. Most calculated tunnel spectra in these disordered systems, however, manifest essentially no significant features, which is also consistent with the current experimental status, where zero-bias peaks are found only occasionally in some samples under careful fine-tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.