Abstract
SummaryThe degradation rate of the pollutant is often an important parameter for designing and maintaining an active treatment system or for determining the rate of natural attenuation. A quasi‐steady‐state gas transport model based on Fick’s law with a correction term for advective flux, for estimating diesel degradation rates from N2, O2 and CO2 concentration versus depth data, was evaluated in a laboratory column study. A loamy sand was spiked with diesel fuel at 0, 1000, 5000 and 10 000 mg kg−1 soil (dry weight basis) and incubated for 15 weeks. Soil gas was sampled weekly at 6 selected depths in the columns and analysed for O2, CO2 and N2 concentrations. The agreement between the measured and the modelled concentrations was good for the untreated soil (R2= 0.60) and very good for the soil spiked with 1000 mg kg−1 (R2= 0.96) and 5000 mg kg−1 (R2= 0.97). Oxygen consumption ranged from −0.15 to −2.25 mol O2 m−3 soil day−1 and CO2 production ranged from 0.20 to 2.07 mol CO2 m−3 soil day−1. A significantly greater mean O2 consumption (P < 0.001) and CO2 production (P < 0.005) over time was observed for the soils spiked with diesel compared with the untreated soil, which suggests biodegradation of the diesel substrate. Diesel degradation rates calculated from respiration data were 1.5–2.1 times less than the change in total petroleum hydrocarbon content. The inability of this study to correlate respiration data to actual changes in diesel concentration could be explained by volatilization, long‐term sorption of diesel hydrocarbons to organic matter and incorporation of diesel hydrocarbons into microbial biomass, aspects of which require further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.