Abstract
Nitrogen dioxide (NO2) is an important target for monitoring atmospheric quality. Deriving ground-level NO2 concentrations with much finer resolution, it requires high-resolution satellite tropospheric NO2 column as input and a reliable estimation algorithm. This paper aims to estimate the daily ground-level NO2 concentrations over China based on machine learning models and the TROPOMI NO2 data with high spatial resolution. In this study, four tree-based algorithm machine learning models, decision trees (DT), gradient boost decision tree (GBDT), random forest (RF) and extra-trees (ET), were used to estimate ground-level NO2 concentrations. In addition to considering many influencing factors of the ground-level NO2 concentrations, we especially introduced simplified temporal and spatial information into the estimation models. The results show that the extra-trees with spatial and temporal information (ST-ET) model has great performance in estimating ground-level NO2 concentrations with a cross-validation R2 of 0.81 and RMSE of 3.45 μg/m3 in test datasets. The estimated results for 2019 based on the ST-ET model achieves a satisfactory accuracy with a cross-validation R2 of 0.86 compared with the other models. Through time-space analysis and comparison, it was found that the estimated high-resolution results were consistent with the ground observed NO2 concentrations. Using data from January 2020 to test the prediction power of the models, the results indicate that the ST-ET model has a good performance in predicting ground-level NO2 concentrations. Taking four ground-level NO2 concentrations hotspots as examples, the estimated ground-level NO2 concentrations and ground-based observation data during the coronavirus disease (COVID-19) pandemic were lower compared with the same period in 2019. The findings offer a solid solution for accurately and efficiently estimating ground-level NO2 concentrations by using satellite observations, and provide useful information for improving our understanding of the regional atmospheric environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.