Abstract

Accurate estimations of actual crop evapotranspiration are of utmost importance to evaluate crop water requirements and to optimize water use efficiency. At this aim, coupling simple agro-hydrological models, such as the well-known FAO-56 model, with remote observations of the land surface could represent an easy-to-use tool to identify biophysical parameters of vegetation, such as the crop coefficient Kc under the actual field conditions and to estimate actual crop evapotranspiration. This paper intends, therefore, to propose an operational procedure to evaluate the spatio-temporal variability of Kc in a citrus orchard characterized by the sporadic presence of ground weeds, based on micro-meteorological measurements collected on-ground and vegetation indices (VIs) retrieved by the Sentinel-2 sensors. A non-linear Kc(VIs) relationship was identified after assuming that the sum of two VIs, such as the normalized difference vegetation index, NDVI, and the normalized difference water index, NDWI, is suitable to represent the spatio-temporal dynamics of the investigated environment, characterized by sparse vegetation and the sporadic presence of spontaneous but transpiring soil weeds, typical of winter seasons and/or periods following events wetting the soil surface. The Kc values obtained in each cell of the Sentinel-2 grid (10 m) were then used as input of the spatially distributed FAO-56 model to estimate the variability of actual evapotranspiration (ETa) and the other terms of water balance. The performance of the proposed procedure was finally evaluated by comparing the estimated average soil water content and actual crop evapotranspiration with the corresponding ones measured on-ground. The application of the FAO-56 model indicated that the estimated ETa were characterized by root-mean-square-error, RMSE, and mean bias-error, MBE, of 0.48 and -0.13 mm d−1 respectively, while the estimated soil water contents, SWC, were characterized by RMSE equal to 0.01 cm3 cm−3 and the absence of bias, then confirming that the suggested procedure can produce highly accurate results in terms of dynamics of soil water content and actual crop evapotranspiration under the investigated field conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.