Abstract
<abstract> <p>Banks and financial institutions all over the world manage portfolios containing tens of thousands of customers. Not all customers are high credit-worthy, and many possess varying degrees of risk to the Bank or financial institutions that lend money to these customers. Hence assessment of default risk that is calibrated and reflective of actual credit risk is paramount in the field of credit risk management. This paper provides a detailed mathematical framework using the concepts of Binomial distribution and stochastic optimisation, in order to estimate the Probability of Default for credit ratings. The empirical results obtained from the study have been illustrated to have potential application value and perform better compared to other estimation models currently in practise.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.