Abstract

AbstractIn this study, we use the National Center for Atmospheric Research Community Earth System Model to investigate the contribution of sea ice and land snow to the climate sensitivity in response to increased atmospheric carbon dioxide content. We focus on the overall effect arising from the presence or absence of sea ice and/or land snow. We analyze our results in terms of the radiative forcing and climate feedback parameter. We find that the presence of sea ice and land snow decreases the climate feedback parameter (and thus increases climate sensitivity). Adjusted radiative forcing from added carbon dioxide is comparatively less sensitive to the presence of sea ice or land snow. The effect of sea ice on the climate feedback parameter decreases as sea ice cover diminishes at higher CO2 concentration. However, the influence of both sea ice and land snow on the climate feedback parameter remains substantial under the CO2 concentration range considered here (to eight times preindustrial CO2 content). Approximately, one quarter of the effect of sea ice and land snow on the climate feedback parameter is a consequence of the effect of these components on longwave feedback that is mainly associated with cloud change. Polar warming in response to added CO2 is approximately doubled by the presence of sea ice and land snow. Relative to the case in which sea ice and land snow are absent in the model, in response to increased CO2 concentrations, the presence of sea ice and land snow results in an increase in global mean warming by over 40%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.