Abstract

Remote estimation of water constituent concentrations in case II waters has been a great challenge, primarily due to the complex interactions among the phytoplankton, tripton, colored dissolved organic matter (CDOM) and pure water. Semi-analytical algorithms for estimating constituent concentrations are effective and easy to implement, but two challenges remain. First, a dataset without a sampling bias is needed to calibrate estimation models; and second, the semi-analytical indices were developed based on several specific assumptions that may not be universally applicable. In this study, a semi-analytical model-optimizing and look-up-table (SAMO-LUT) method was proposed to address these two challenges. The SAMO-LUT method is based on three previous semi-analytical models to estimate chlorophyll a, tripton and CDOM. Look-up tables and an iterative searching strategy were used to obtain the most appropriate parameters in the models. Three datasets (i.e., noise-free simulation data, in situ data and Medium Resolution Imaging Spectrometer (MERIS) satellite data) were collected to validate the performance of the proposed method. The results show that the SAMO-LUT method yields error-free results for the ideal simulation dataset; and is able also to accurately estimate the water constituent concentrations with an average bias (mean normalized bias, MNB) lower than 9% and relative random uncertainty (normalized root mean square error, NRMS) lower than 34% even for in situ and MERIS data. These results demonstrate the potential of the proposed algorithm to accurately monitor inland and coastal waters based on satellite observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.