Abstract
Difference detection is actual and extremely useful for evaluating a new medicine B against a specified disease by comparing to an old medicine A, which has been used to treat the disease for many years. The datasets generated by applying A and B to the disease are called contrast groups and, main differences between the groups are the mean and distribution differences, referred to structural differences in this paper. However, contrast groups are only two samples obtained by limited applications or tests on A and B, and may be with missing values. Therefore, the differences derived from the groups are inevitably uncertain. In this paper, we propose a statistically sound approach for measuring this uncertainty by identifying the confidence intervals of structural differences between contrast groups. This method is designed significantly against most of those applications whose exact data distributions are unknown a priori, and the data may also be with missing values. We apply our approach to UCI datasets to illustrate its power as a new data mining technique for, such as, distinguishing spam from non-spam emails; and the benign breast cancer from the malign one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.