Abstract

Structural collapse performance assessment has been at the center of many researchers’ interest due to complications of this phenomenon and uncertainties involved in modeling the simulation of the structural collapse response. This research aims to predict the structural collapse responses including mean collapse capacity, collapse standard deviation, and collapse drift by considering modeling uncertainties and then estimating collapse fragility curves, collapse risk, and reliability using Response Surface Method (RSM) and Artificial Neural Network (ANN). Modeling uncertainties for evaluating collapse responses are the parameters of the modified Ibarra-Krawinkler moment-rotation curve. Moreover, to analyze the structural uncertainty, the correlation between the model parameters in one component and between two structural components was considered. The Latin Hypercube Sampling (LHS) method and Cholesky decomposition were used to produce independent and dependent random variables, respectively. To predict the collapse responses of the structure, taking into account the uncertainties, as the number of uncertainties increases, the number of simulations for the uncertainties also increases, leading to a significant increase in the computational effort to estimate the structural responses, in the presence of a limited number of samples for uncertainties, a hybrid of ANN with PSO algorithm was used to reduce the computational effort in order to estimate the collapse fragility curves, collapse risk, and structural reliability. The results show that structural collapse responses can be predicted with appropriate accuracy by producing a limited number of samples for uncertainties and using an ANN-PSO algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call