Abstract
Conservation of large ocean wildlife requires an understanding of how they use space. In Western Australia, the humpback whale (Megaptera novaeangliae) population is growing at a minimum rate of 10% per year. An important consideration for conservation based management in space-limited environments, such as coastal resting areas, is the potential expansion in area use by humpback whales if the carrying capacity of existing areas is exceeded. Here we determined the theoretical carrying capacity of a known humpback resting area based on the spacing behaviour of pods, where a resting area is defined as a sheltered embayment along the coast. Two separate approaches were taken to estimate this distance. The first used the median nearest neighbour distance between pods in relatively dense areas, giving a spacing distance of 2.16 km (±0.94). The second estimated the spacing distance as the radius at which 50% of the population included no other pods, and was calculated as 1.93 km (range: 1.62–2.50 km). Using these values, the maximum number of pods able to fit into the resting area was 698 and 872 pods, respectively. Given an average observed pod size of 1.7 whales, this equates to a carrying capacity estimate of between 1187 and 1482 whales at any given point in time. This study demonstrates that whale pods do maintain a distance from each other, which may determine the number of animals that can occupy aggregation areas where space is limited. This requirement for space has implications when considering boundaries for protected areas or competition for space with the fishing and resources sectors.
Highlights
An important consideration for conservation is the population size that a given habitat can support
Carrying capacity is often calculated based on food supply [9,10]: for example, the estimated carrying capacity of sites used by migratory birds is calculated using a ‘daily ration model’, whereby the total consumable food of the site is divided by the individual energetic requirement [1,10,11]
The two factors we investigated here were pod size and pod composition, where a pod is defined as a group of one or more animals
Summary
An important consideration for conservation is the population size that a given habitat can support. Carrying capacity is often calculated based on food supply [9,10]: for example, the estimated carrying capacity of sites used by migratory birds is calculated using a ‘daily ration model’, whereby the total consumable food of the site is divided by the individual energetic requirement [1,10,11]. This conventional approach to calculating carrying capacity is limited, and other studies have found that carrying capacity can be influenced by predation risk [12], freshwater availability [13], shelter [14], and the availability of nesting sites [15]. As the space requirement of an animal, for example its home range, is generally related to the availability of resources, space itself can be considered as a resource that will limit density
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.