Abstract

Carbon budgets, which define the total allowable CO2 emissions associated with a given global climate target, are a useful way of framing the climate mitigation challenge. In this paper, we review the geophysical basis for the idea of a carbon budget, showing how this concept emerges from a linear climate response to cumulative CO2 emissions. We then discuss the difference between a “CO2-only carbon budget” associated with a given level of CO2-induced warming and an “effective carbon budget” associated with a given level of warming caused by all human emissions. We present estimates for the CO2-only and effective carbon budgets for 1.5 and 2 °C, based on both model simulations and updated observational data. Finally, we discuss the key contributors to uncertainty in carbon budget estimates and suggest some implications of this uncertainty for decision-making. Based on the analysis presented here, we argue that while the CO2-only carbon budget is a robust upper bound on allowable emissions for a given climate target, the size of the effective carbon budget is dependent on the how quickly we are able to mitigate non-CO2 greenhouse gas and aerosol emissions. This suggests that climate mitigation efforts could benefit from being responsive to a changing effective carbon budget over time, as well as to potential new information that could narrow uncertainty associated with the climate response to CO2 emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call