Abstract
Marine megafauna plays an important functional role in marine ecosystems as top predators but are threatened by a wide range of anthropogenic activities. Bycatch, the incidental capture of non-targeted species in commercial and recreational fisheries, is of particular concern for small cetacean species, such as dolphins and porpoises. In the North-East Atlantic, common dolphin (Delphinus delphis, Linné 1758) bycatch has been increasing and associated with large numbers of animals stranding during winter on the French Atlantic seashore since at least 2017. However, uncertainties around the true magnitude of common dolphin bycatch and the fisheries involved have led to delays in the implementation of mitigation measures. Current data collection on dolphin bycatch in France is with non-dedicated observers deployed on vessels for the purpose of national fisheries sampling programmes. These data cannot be assumed representative of the whole fisheries' bycatch events. This feature makes it difficult to use classic ratio estimators since they require a truly randomised sample of the fishery by dedicated observers. We applied a newly developed approach, regularised multilevel regression with post-stratification, to estimate total bycatch from unrepresentative samples and total fishing effort. The latter is needed for post-stratification and the former is analysed in a Bayesian framework with multilevel regression to regularise and better predict bycatch risk. We estimated the number of bycaught dolphins for each week and 10 International Council for the Exploration of the Sea (ICES) divisions from 2004 to 2020 by estimating jointly bycatch risk, haul duration, and the number of hauls per days at sea (DaS). Bycatch risk in pair trawlers flying the French flag was the highest in winter 2017 and 2019 and was associated with the longest haul durations. ICES divisions 8.a and 8.b (shelf part of the Bay of Biscay) were estimated to have the highest common dolphin bycatch. Our results were consistent with independent estimates of common dolphin bycatch from strandings. Our method show cases how non-representative observer data can nevertheless be analysed to estimate fishing duration, bycatch risk and, ultimately, the number of bycaught dolphins. These weekly-estimates improve upon current knowledge of the nature of common dolphin bycatch and can be used to inform management and policy decisions at a finer spatio-temporal scale than has been possible to date. Our results suggest that limiting haul duration, especially in winter, could serve as an effective mitigation strategy.
Highlights
Over the last 50 years, the conservation status of cetaceans has been deteriorating (Brownell et al, 2019)
The population-level data on effort is aggregated and available as days at sea (DaS), the metric currently used in international fora (e.g., ICES Working Group on BYCatch, Working Group on Bycatch (WGBYC))
We modelled jointly bycatch risk, fishing duration of hauls, and the number of hauls per DaS of pair-trawlers flying the French flag at the week-level for each year between 2004 and 2020 (Table 2) and each ICES division (Figure 1)
Summary
Over the last 50 years, the conservation status of cetaceans has been deteriorating (Brownell et al, 2019). Over 20 species of small cetaceans have been registered in the North-East Atlantic, with roughly half of which occurring regularly (Course, 2021). Because of their slow life histories and their limited potential rates of increase, small cetaceans are at risk of decline when anthropogenic activities induce additional mortality on populations (Read, 2008). Anthropogenic activities and their cumulative impacts can take a heavy toll on populations. Common species may disappear, such as short-beaked common dolphins (Delphinus delphis, hereafter called common dolphins) in the Adriatic Sea (Bearzi and Reeves, 2021), or are under many threats, e.g., in the Bay of Biscay (García-Baron et al, 2019; Murphy et al, 2021)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.