Abstract

Energy models should be simplified to handle data limitations and should predict reliable energy use. Currently, it remains challenging to ensure an appropriate level of detail for simplifying building energy models and to avoid performance gaps when predicting electricity consumption. In this respect, this research proposes to identify an appropriate level of simplifying a building energy model, predict electricity demands and performance gaps using the simplified energy model, and expand the model usability through the operational stage. Building electricity demands predicted through EnergyPlus (version 8.7.0) simulation are compared with actual electricity data collected through Internet of Things (IoT) sensors. Consideration of performance gaps increases the predictability of electricity consumption of a simplified energy model. Also, the Bayesian multilevel additive model updates the performance gaps along with the collection of new IoT data. The findings of this study contribute to forecasting electricity demands with a simplified energy model by predicting performance gaps that can be applied to predicting the electricity needs of similar buildings in the design stage and controlling operational electricity use in the operational stage by comparing sensor measurement with reference data provided by the energy model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.